Abstract

Among the various forms of material damage, exit-ply delamination has been identified as one of the most deleterious damage processes associated with drilling fibre-reinforced plastics. The thrust force has been cited as the primary cause for drilling-induced exit-ply delamination. Only one analytical model for the prediction of the critical thrust force responsible for delamination using core drills can be found in the literature. In this study, a realistic model to predict critical thrust force responsible for drilling-induced exit-ply delamination in a multi-directional carbon fibre-reinforced plastic laminate with core drill has been proposed. A comparison between the proposed model, literature model as well as the experimental tests conducted during punching tests is presented. The proposed model is found to correlate well with experimental punching tests. In fact, the maximum relative errors recorded between the experimental values of the critical thrust force and the measured values are around 15%. Micro-tomography experiments have also been conducted that capture the drilling-induced damage in multi-directional carbon fibre-reinforced plastics in great detail. The X-ray images highlight the difficulty in controlling the thickness of the uncut plies located under the core drill during punching tests that can be attributed to some deviations in predictions of critical thrust force. Postmortem examination of the blind holes after punching tests also confirms the presence of a net delamination near the vicinity of the nominal diameter of the core drill, which correlates well to the hypothesis of the analytical model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.