Abstract

AbstractThe static tensile properties in the form of ultimate failure stress, ultimate failure strain and Young’s modulus of a cross-ply glass fiber-reinforced polymer (GFRP) composite laminate [904, 04]s and an unconventional angle-ply GFRP composite laminate [+67.54, -67.54]s were investigated using the netting analysis, the laminate mixture rule (Hart-Smith 10% rule) and the classical laminate theory (CLT). The findings were then compared to experimental results to determine the accuracy of each analytical technique. It was found that the netting analysis was the best overall method for estimating the cross-ply laminate tensile properties, whereas neither the CLT nor the 10% rule were appropriate for estimating the tensile properties of the unconventional ply angle laminate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.