Abstract

The enhanced gradient plasticity theories formulate a constitutive framework on the continuum level that is used to bridge the gap between the micromechanical plasticity and the classical continuum plasticity. They are successful in explaining the size effects encountered in many micro- and nano-advanced technologies due to the incorporation of an intrinsic material length parameter into the constitutive modeling. However, the full utility of the gradient-type theories hinges on one's ability to determine the intrinsic material length that scales with strain gradients, and this study aims at addressing and remedying this situation. Based on the Taylor's hardening law, a micromechanical model that assesses a nonlinear coupling between the statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) is used here in order to derive an analytical form for the deformation-gradient-related intrinsic length-scale parameter in terms of measurable microstructural physical parameters. This work also presents a method for identifying the length-scale parameter from micro- and nano-indentation experiments using both spherical and pyramidal indenters. The deviation of the Nix and Gao [Mech. Phys. Solids 46 (1998) 411] and Swadener et al. [J. Mech. Phys. Solids 50 (2002) 681; Scr. Mater. 47 (2002) 343] indentation size effect (ISE) models’ predictions from hardness results at small depths for the case of conical indenters and at small diameters for the case of spherical indenters, respectively, is largely corrected by incorporating an interaction coefficient that compensates for the proper coupling between the SSDs and GNDs during indentation. Experimental results are also presented which show that the ISE for pyramidal and spherical indenters can be correlated successfully by using the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.