Abstract

Detailed analytical and experimental approaches were performed to calculating the ratio of the pull-in thrust to the input power of High Density Transverse Flux linear Stepper Motor (HDTFLSM) with considerations of the electrical time constant, the mechanical time constant and the friction. The analytical approach involves the use of Fourier series analysis to derive the equation for the pull-in thrust to input power ratio. The experimentation was performed under different load conditions until the motor come to the standstill value. A chopped voltage was applied to motor at different speeds and the obtained results were compared with those for normal voltage. Comparison between analytical and experimental results shows good agreement, for instance at 0.22 m/s the difference percentage on normal voltage and chopped voltage are 6.1% and 6.7%, respectively. The chopped voltage has higher ratio of the pull-in thrust to the input power compare to normal voltage so that the machine performance can be improvised to a greater extent. The maximum improvement percentage of 18.8% on pull-in thrust to input power ratio for motor with chopped voltage was obtained at 0.22 m/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.