Abstract

Aeroelastic response and control of airfoil-flap wing exposed to unsteady aerodynamic loads is addressed. The aim is to suppress flutter and to maintain stability of the system. The analytical aerodynamic model is featuring plunging–pitching–flapping coupled motion. Both linear and nonlinear models are developed. Linear quadratic regulator theory is used to design a full state feedback controller in state-space. The control law is implemented through the flap torque to suppress flutter instability and enhance the aeroelastic response. The system response is investigated when it is flying beyond the flutter speed and the control is delayed by a few seconds. The effects of aircraft propeller excitation and the variation of the aspect ratio on the intitiation of flutter are investigated. Numerical simulations are complemented by experimental measurements in a wind tunnel for NACA0012 airfoil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call