Abstract
The aim of this work is to obtain new inequalities for the variable symmetric division deg index $ SDD_\alpha(G) = \sum_{uv \in E(G)} (d_u^\alpha/d_v^\alpha+d_v^\alpha/d_u^\alpha) $, and to characterize graphs extremal with respect to them. Here, by $ uv $ we mean the edge of a graph $ G $ joining the vertices $ u $ and $ v $, and $ d_u $ denotes the degree of $ u $, and $ \alpha \in \mathbb{R} $. Some of these inequalities generalize and improve previous results for the symmetric division deg index. In addition, we computationally apply the $ SDD_\alpha(G) $ index on random graphs and we demonstrate that the ratio $ \langle SDD_\alpha(G) \rangle/n $ ($ n $ is the order of the graph) depends only on the average degree $ \langle d \rangle $.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.