Abstract

AbstractThe sea is an important renewable energy resource for its extension and the power conveyed by waves, currents, tides, and thermal gradients. Amongst these physical phenomena, sea waves are the source with the highest energy density and may contribute to fulfilling the global increase of power demand. Despite the potential of sea waves, their harnessing is still a technological challenge. Oscillating water column systems operating with Wells turbines represent one of the most straightforward and reliable solutions for the optimal exploitation of this resource. An analytical model and computational fluid dynamics models were developed to evaluate the functioning of monoplane isolated Wells turbines. For the former modeling typology, a blade element momentum code relying on the actuator disk theory was applied, considering the rotor as a set of airfoils. For the latter modeling typology, a three-dimensional multi-block technique was implemented to create the computational domain with a fully mapped mesh composed of hexahedral elements. The employment of circumferential periodic boundary conditions allowed for the reduction of computational power and time. The models use Reynolds-averaged Navier-Stokes (RANS) or u-RANS schemes with a multiple reference frame approach or the u-RANS formulation with a sliding mesh approach. The achieved results were compared with analytical and experimental literature data for validation. All the developed models showed good agreement. The analytical model is suitable for a fast prediction of the turbine operation on a wide set of configurations during the first design stages, while the computational fluid dynamics (CFD) models are indicated for the further investigation of the selected configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.