Abstract

Background Evaluating the tumor RAS/BRAF status is important for treatment selection and prognosis assessment in metastatic colorectal cancer (mCRC) patients. Correction of artifacts from library preparation and sequencing is essential for accurately analyzing circulating tumor DNA (ctDNA) mutations. Here, we assessed the analytical and clinical performance of a novel amplicon-based next-generation sequencing (NGS) assay, Firefly™, which employs a concatemer-based error correction strategy. Methods Firefly assay targeting KRAS/NRAS/BRAF/PIK3CA was evaluated using cell-free DNA (cfDNA) reference standards and cfDNA samples from 184 mCRC patients. Plasma results were compared to the mutation status determined by ARMS-based PCR from matched tissue. Samples with a mutation abundance below the limit of detection (LOD) were retested again by droplet digital polymerase chain reaction (ddPCR) or NGS. Results The Firefly assay demonstrated superior sensitivity and specificity with a 98.89% detection rate at an allele frequency (AF) of 0.2% for 20 ng cfDNA. Generally, 40.76% and 48.37% of the patients were reported to be positive by NGS of plasma cfDNA and ARMS of FFPE tissue, respectively. The concordance rate between the two platforms was 80.11%. In the pre-treatment cohort, the concordance rate between plasma and tissue was 93.33%, based on the 17 common exons that Firefly™ and ARMS genotyped, and the positive percent agreement (PPA) and negative percent agreement (NPA) for KRAS/NRAS/BRAF/PIK3CA were 100% and 99.60%, respectively. Conclusions Total plasma cfDNA detected by Firefly offers a viable complement for mutation profiling in CRC patients, given the high agreement with matched tumor samples. Together, these data demonstrate that Firefly could be routinely applied for clinical applications in mCRC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call