Abstract
Abstract The quantification of timescales associated with the movement of the seawater-freshwater interface is useful for developing effective management strategies for controlling seawater intrusion (SWI). In this study, for the first time, we derive an explicit analytical solution for the timescales of SWI and seawater retreat (SWR) in a confined, homogeneous coastal aquifer system under the quasi-steady assumption, based on a classical sharp-interface solution for approximating freshwater outflow rates into the sea. The flow continuity and hydrostatic equilibrium across the interface are identified as two primary mechanisms governing timescales of the interface movement driven by an abrupt change in discharge rates or hydraulic heads at the inland boundary. Through theoretical analysis, we quantified the dependence of interface-movement timescales on porosity, hydraulic conductivity, aquifer thickness, aquifer length, density ratio, and boundary conditions. Predictions from the analytical solution closely agreed with those from numerical simulations. In addition, we define a temporal asymmetry index (the ratio of the SWI timescale to the SWR timescale) to represent the resilience of the coastal aquifer in response to SWI. The developed analytical solutions provide a simple tool for the quick assessment of SWI and SWR timescales and reveal that the temporal asymmetry between SWI and SWR mainly relies on the initial and final values of the freshwater flux at the inland boundary, and is weakly affected by aquifer parameters. Furthermore, we theoretically examined the log-linearity relationship between the timescale and the freshwater flux at the inland boundary, and found that the relationship may be approximated by two linear functions with a slope of -2 and -1 for large changes at the boundary flux for SWI and SWR, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.