Abstract

AbstractUnsaturated soils are considered as porous continua, composed of porous skeleton with its pores filled by water and air. The governing partial differential equations (PDE) are derived based on the mechanics for isothermal and infinitesimal evolution of unsaturated porous media in terms of skeleton displacement vector, liquid, and gas scalar pressures. Meanwhile, isotropic linear elastic behavior and liquid retention curve are presented in terms of net stress and capillary pressure as constitutive relations. Later, an explicit 3D Laplace transform domain fundamental solution is obtained for governing PDE and then closed‐form analytical transient 3D fundamental solution is presented by means of analytical inverse Laplace transform technique. Finally, a numerical example is presented to validate the assumptions used to derive the analytical solution by comparing them with the numerically inverted ones. The transient fundamental solutions represent important features of the elastic wave propagation theory in the unsaturated soils. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.