Abstract
It is hinted that anomalies are not really anomalous since (at least in characteristic examples) they can be related to a lack of common analytic vectors for the Hamiltonian and the observables. We reanalyze the notions of analytic vectors and of local representations of Lie algebras in this light, and show how the notion of preferred observables introduced in the deformation (star product) approach to quantization may help give an anomaly-free formulation to physical problems. Finally, some remarks are made concerning the applicability of these considerations to field theory, especially in two dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.