Abstract

The nonlinear electrokinetic response of ionic solutions is important in nanofluidics. However, quantitatively understanding the mechanisms is still a challenging problem because of a lack of analytic approaches. Here, a general framework for calculating the nonlinear electrokinetic coefficients of strongly confined electrolytes is constructed using a perturbation scheme of the pressure and voltage differences across a nanochannel. The theory is applied to an electrically neutral nanochannel filled with electrolytes, and analytic expressions for the first- and third-order electrokinetic coefficients are obtained. We demonstrate that the combination of high hydrodynamic permeability and ion–wall friction plays an essential role in nonlinear electrokinetics. Furthermore, we analytically demonstrate that the external flow induces uniform excess charge inside the nanochannel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.