Abstract

We consider the problem of localized flexural waves in thin plates that have periodic structure, consisting of a two-dimensional array of pins or point masses. Changing the properties of the structure at a single point results in a localized mode within the band-gap that is confined to the vicinity of the defect, while changing the properties along an entire line of points results in a waveguide mode. We develop here an analytic theory of these modes and provide semi-analytic expressions for the eigenfrequencies and fields of the point defect states, as well as the dispersion curves of the defect waveguide modes. The theory is based on a derivation of Green's function for the structure, which we present here for the first time. We also consider defects in finite arrays of point masses, and demonstrate the connection between the finite and infinite systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.