Abstract

The geometric theory of pencils in a germ of a smooth complex surface has been studied by several authors and their properties strongly lie on the structure of the dicritical components of their resolution, whereas the strict transform of the general element of the pencil by the resolution can be seen as a union of the so-called curvettes. This theory can be interpreted as the study of ideals (with two generators) in the ring of complex convergent power series in two variables, which is a local regular ring of dimension 2. In this work, we study properties of curvettes and dicriticals in an arbitrary local regular ring of dimension 2 (without restrictions on its characteristic or the one of its residue field). All the results are stated in purely algebraic terms though the ideas come from geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.