Abstract
The combination of a machine's rotation cycle and the unpredictable industrial interference encountered by rotating machinery can generate a time-varying noise signal. Such signals cause difficulty while detecting the quench voltage in superconducting rotating machinery. Quench detection is more difficult in high-temperature superconductors (HTS) than in low-temperature superconductors (LTS) because the normal zone propagation (NZP) velocity of HTS is lower than that of LTS. To detect the quench signal in an HTS, signal wires are widely used for voltage taps. However, owing to the low NZP velocity, it is difficult to detect the quench signal in HTS when the voltage taps are attached at short distances from the HTS devices. Furthermore, there is a possibility of the HTS burning out when voltage taps are attached to both ends of the HTS tape, because the hot spot is scarcely dissipative and thermal runaway may occur in the normal zone. Thus, detecting the quench in HTS rotating machinery is difficult. Moreover, the signal wires used in the voltage taps become twisted when the HTS rotor coil rotates to generate magnetic flux. Therefore, in this paper, a sensitive quench-detection method that uses electromagnetically coupled coils is presented for application to HTS rotating machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.