Abstract

We describe a procedure to solve an up to problem where the particles are separated topologically in N groups with at most two particles in each. Arbitrary interactions are allowed between the (two) particles within one group. All other interactions are approximated by harmonic oscillator potentials. The problem is first reduced to an analytically solvable N-body problem and N independent two-body problems. We calculate analytically spectra, wave functions, and normal modes for both the inverse square and delta-function two-body interactions. In particular, we calculate separation energies between two strings of particles. We find that the string separation energy increases with N and interaction strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.