Abstract

In this article, we extend the Laplace transform method to obtain analytic solutions for linear RDDEs and NDDEs which have real and complex poles of higher order. Furthermore, we present first-order linear DDEs that feature resonance phenomena. The procedure is similar to the one where all of the poles are order one, but requires one to use the appropriate modifications when using Cauchy’s residue theorem for the poles of higher order. The process for obtaining the solution relies on computing the relevant infinite sequence of poles and then determining the Laplace inverse, via the Cauchy residue theorem. For RDDEs, the poles can be obtained in terms of the Lambert W function, but for NDDEs,the complex poles, in most cases, must be computed numerically. We found that an important feature of first-order linear RDDES and NDDES with poles of higher order is that it is possible to incite the resonance phenomena, which in the counterpart ordinary differential equation cannot occur. We show that despite the presence of higher order poles or resonance phenomena, the solutions generated by the Laplace transform method for linear RDDEs and NDDEs that have higher order poles are still accurate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.