Abstract

The time evolution of dipolar-dephasing NMR signals reveals the strength of dipolar couplings in solids. In most instances where microcrystalline samples are investigated, numerical simulations of dipolar-dephasing intensities provide fits to experimental data in order to determine internuclear distances. In this paper, analytic solutions are derived for the time evolution of signals in heteronuclear SEDOR, REDOR, and TEDOR experiments. These solutions, in terms of infinite series of Bessel functions of the first kind, are exact and replace a numerical integration over the possible orientations of the internuclear vectors in a powdered or amorphous sample. Results from the analytic solutions converge rapidly and are compared here with results from numerical integration. A method for efficient least-squares fitting of dipolar-dephasing data is also demonstrated, including fits to experimental SEDOR and TEDOR dephasing curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.