Abstract

In this paper, analytically investigated is a generalized one-dimensional time-dependent Schrödinger equation. Using Darboux transformation operator technique, we construct the first-order Darboux transformation and the real-valued condition of transformed potential for the generalized Schrödinger equation. To prove the equivalence of the supersymmetry formalism and the Darboux transformation, we investigate the relationship among first-order Darboux transformation, supersymmetry and factorization of the corresponding effective mass Hamiltonian. Furthermore, the nth-order Darboux transformations are constructed by means of different method. Finally, by using Darboux transformation, some analytical solutions are generated in a recursive manner for some examples of the Schrödinger equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.