Abstract

A new method, based on the Kelvin transformation and the Fokas integral method, is employed for solving analytically a potential problem in a non-convex unbounded domain of ℝ2, assuming the Neumann boundary condition. Taking advantage of the property of the Kelvin transformation to preserve harmonicity, we apply it to the present problem. In this way, the exterior potential problem is transformed to an equivalent one in the interior domain which is the Kelvin image of the original exterior one. An integral representation of the solution of the interior problem is obtained by employing the Kelvin inversion in ℝ2 for the Neumann data and the ‘Neumann to Dirichlet’ map for the Dirichlet data. Applying next the ‘reverse’ Kelvin transformation, we finally obtain an integral representation of the solution of the original exterior Neumann problem. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.