Abstract

An approximate analytic solution for torsion of thin-walled laminated composite beams of symmetrical open cross sections with influence of shear is presented. The solution based on the classical Vlasov’s thin-walled beam theory is modified for thin-walled laminated composite beams with orthotropic and symmetrical lay-up. It is shown that the beam subjected to torsion with influence of shear, caused by couples in the cross section planes, is also subjected to bending due to shear in the plane orthogonal to the plane of symmetry. If the cross section has two axes of symmetry, the beam will be subjected only to torsion with influence of shear. The expressions for the displacements and normal stresses are derived in closed analytic form. The material influence on shear is defined by factor that depends on the fibre orientations. Simply supported and clamped beams subjected to distributed couples are considered. Illustrative examples are provided, and the results for the displacements and stresses show very good agreement between analytical ones and numerically obtained results utilizing three-dimensional shell finite elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.