Abstract

We present an efficient, analytical, and simple route to approximating tunneling splittings in multidimensional chemical systems, directly from ab initio computations. The method is based on the Wentzel-Kramers-Brillouin (WKB) approximation combined with the vibrational perturbation theory. Anharmonicity and corner-cutting effects are implicitly accounted for without requiring a full potential energy surface. We test this method on the following three systems: a model one-dimensional double-well potential, the isomerization of malonaldehyde, and the isomerization of tropolone. The method is shown to be efficient and reliable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.