Abstract

Analytic versions of QCD are those whose coupling αs(Q2) does not have the unphysical Landau singularities on the space-like axis (-q2= Q2 > 0). The coupling is analytic in the entire complex plane except the time-like axis (Q2 < 0). Such couplings are thus suitable for application of perturbative methods down to energies of order GeV. We present a short review of the activity in the area which started with a seminal paper of Shirkov and Solovtsov ten years ago. Several models for analytic QCD coupling are presented. Strengths and weaknesses of some of these models are pointed out. Further, for such analytic couplings, constructions of the corresponding higher order analytic couplings (the analogs of the higher powers of the perturbative coupling) are outlined, and an approach based on the renormalization group considerations is singled out. Methods of evaluation of the leading-twist part of space-like observables in such analytic frameworks are described. Such methods are applicable also to the inclusive time-like observables. Two analytic models are outlined which respect the ITEP Operator Product Expansion philosophy, and thus allow for an evaluation of higher-twist contributions to observables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.