Abstract

Analytic models that describe the mechanical behavior of thin glass–polymer laminate structures have been investigated experimentally and via finite-element analysis (FEA). Standard laminate effective thickness models were shown to be applicable to a wide range of glass/interlayer thickness ratios and to a wide range of interlayer shear moduli, covering most currently existing glass laminates. In addition, an analytic comparison of the effective thickness model with the traditional composite beam model clarified the applicable limits of the former model in the range of the interlayer/glass thickness ratio and interlayer shear modulus. These modeling approaches enable a rational engineering design approach for structurally efficient, lightweight, and safe glazing laminates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call