Abstract

The analytic energy gradients with respect to nuclear motion are derived for the natural orbital functional (NOF) theory. The resulting equations do not require resorting to linear-response theory, so the computation of NOF energy gradients is analogous to gradient calculations at the Hartree-Fock level of theory. The structures of 15 spin-compensated systems, composed of first- and second-row atoms, are optimized employing the conjugate gradient algorithm. As functionals, two orbital-pairing approaches were used, namely, the fifth and sixth Piris NOFs (PNOF5 and PNOF6). For the latter, the obtained equilibrium geometries are compared with coupled cluster singles and doubles calculations and accurate empirical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.