Abstract

Recent progress regarding the excitation of energetic-particle driven geodesic acoustic modes (EGAMs) in particle-in-cell simulations is presented in this paper. The exact dispersion relation with adiabatic electrons is derived and solved. The origin of the so-called EGAM is briefly analysed and we show that its nature changes, at least, with the safety factor. A simple expression for the GAM frequency modified in the presence of a small concentration of energetic particles is given in the fluid limit. We show that gyrokinetic simulations with Nemorb in the presence of adiabatic electrons are able to reproduce the analytic predictions. Also, different energy channels are analysed by means of dedicated energy diagnostics characterizing the wave-particle interaction. Finite Larmor radius and finite orbit width effects are studied regarding the excitation of geodesic acoustic modes, showing that these effects are likely to be negligible for sufficiently high concentration of energetic particles, but significant when approaching the threshold of excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.