Abstract

Scanning capacitance microscopy (SCM) is a doping profile extraction using a nanometric probe as a gate of a metal-oxide-semiconductor (MOS) structure and measuring the differential capacitance. Thanks to the complete MOS equations, the authors propose in this article a description of the differential capacitance calculation. This analytic presentation is based on the solution of the Poisson-Boltzmann equation in the unidimensional mode in silicon and a decomposition of the probe in elementary rings giving capacitance from the surface probe and silicon. As [dC(Vg)∕dVg]α(dΨs∕dVg), this presentation yields to the importance of the surface band bending Ψs at the oxide-semiconductor interface. The dC(Vg)∕dVg calculation shows that the contact of the probe with the sample has its main contribution over a few nanometers. Results are discussed to obtain a calibration of a SCM probe available in a large range of doping and voltage and to assess the dC(Vg)∕dVg signal after erosion of the probe by successive scans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.