Abstract

In underwater acoustics various types of nonlocal boundary conditions have been developed to handle the semi-infinite bottom in parabolic approximations and to efficiently reduce the computational domain. This paper proposes new exact nonlocal boundary conditions suitable for a layered ocean bottom and presents an analytic derivation of the corresponding adjoint equations. The new boundary condition has the form of a Neumann-to-Dirichlet map (NtD) that explicitly contains the geoacoustic parameters of the stratified bottom, i.e., thickness, density, sound speed, and attenuation of each layer. By means of the analytic adjoint, exact gradient information can be obtained which in turn allows a direct inversion of these parameters using a gradient-based optimization scheme. [Work supported by Royal Netherlands Navy.]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.