Abstract

Abstract In this paper, we give formulas that allow one to move between transfer function type realizations of multi-variate Schur, Herglotz, and Pick functions, without adding additional singularities except perhaps poles coming from the conformal transformation itself. In the two-variable commutative case, we use a canonical de Branges–Rovnyak model theory to obtain concrete realizations that analytically continue through the boundary for inner functions that are rational in one of the variables (so-called quasi-rational functions). We then establish a positive solution to McCarthy’s Champagne conjecture for local to global matrix monotonicity in the settings of both two-variable quasi-rational functions and $d$-variable perspective functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.