Abstract

The time- and frequency-domain methods of electromagnetic geophysical prospecting are compared to determine the similarities and differences and to recommend system choices for particular field situations. Only the wire-loop configuration is considered, as this array is quite standard in geothermal prospecting. Comparisons are carried out using hardware and physical considerations, a large catalog of 3-layer model curves, 2D-3D model calculations, and by comparing Fourier transforms and layered inversions of field data from the Randsburg KGRA in California. The results generally indicate that frequency-domain methods offer better resolution and more practical hardware design for long-offset shallow applications. They also have a much better backup in terms of modelling tools for interpretation and history of experience. Transient methods are better suited for deeper probing, for both long- and short-offset applications. Frequency-domain methods are limited by the primary field, which is subject to distortion from near-surface inhomogeneites; this is also the case for early-time transients. Transient measurements in late time are limited by ambient electromagnetic noise and dynamic range of receiving equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call