Abstract
We introduce, in a general setting, an ‘‘analytic’’ version of standard equational calculi of combinatory logic. Analyticity lies on the one side in the fact that these calculi are characterized by the presence of combinatory introduction rules in place of combinatory axioms, and on the other side in that the transitivity rule proves to be eliminable. Apart from consistency, which follows immediately, we discuss other almost direct consequences of analyticity and the main transitivity elimination theorem; in particular the Church−Rosser and the leftmostreduction theorems for the associated notions of reduction. The last two sections deal with analytic combinatory calculi with the extensionality rule added. Here, as far as the elimination of transitivity is concerned, we have only partial results, which unfortunately do not cover, at present, full CL + Ext. Yet, they are sufficient to prove the decidability of weaker combinatory calculi with extensionality, including e.g. BCK + Ext.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.