Abstract

We present an analytic scheme for the calculation of pure vibrational contributions to linear and nonlinear optical properties such as the polarizability and the first and second hyperpolarizabilities. The formalism is fully expressed in terms of a perturbation- and time-dependent atomic orbital basis, using the elements of the density matrix in the atomic orbital basis as the basic variables. We calculate perturbed densities up to third order with respect to the electric field in accordance with the n + 1 rule, and the approach is therefore applicable for the calculation of pure vibrational contributions involving all vibrational coordinates in large molecular complexes. In the case of static electric fields, we therefore only need to calculate 19 response equations, independent of the size of the molecule. If we can determine the molecular energy and force field, the calculation of pure vibrational contributions to the nonlinear optical properties of the molecule is therefore a rather straightforward task. We illustrate the implementation by calculating pure vibrational contributions to the first and second hyperpolarizabilities of molecules containing up to 66 atoms using basis sets of good quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call