Abstract

The analytic linear response formalism for the calculation of the effective contact densities ρ̅ in the context of the normalized elimination of the small component (NESC) method is developed and implemented. The formalism is tested for the calculation of contact densities and contact density differences in a series of mercury cations and mercury-containing molecules. The calculations carried out at the NESC/SCF, NESC/MP2, and NESC/CCSD levels of theory demonstrate high sensitivity of the contact density to the local coordination environment and the oxidation state of mercury. The NESC/MP2 results are in a very good agreement with the NESC/CCSD ones, which suggests that the former method can be used as a cost-effective alternative to high-level ab initio calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.