Abstract

We study logarithmic conformal field theory (LogCFT) in four dimensions using conformal bootstrap techniques in the large spin limit. We focus on the constraints imposed by conformal symmetry on the four point function of certain logarithmic scalar operators and compute the leading correction to the anomalous dimension of double trace operators in the large spin limit. There exist certain holographic duals to such LogCFTs, which involve higher derivative equations of motion. The anomalous dimension is related to the binding energy of a state where two scalars rotate around each other with a large angular momentum. We compute this energy shift and compare it to the anomalous dimension of the large spin double trace operators due to stress tensor exchange in the LogCFT. Our result shows that the cluster decomposition principle is satisfied for LogCFTs as long as the dimensions of the operators are positive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.