Abstract

In this paper, we use Hermite cubic finite elements to approximate the solutions of a nonlinear Euler–Bernoulli beam equation. The equation is derived from Hollomon's generalized Hooke's law for work hardening materials with the assumptions of the Euler–Bernoulli beam theory. The Ritz–Galerkin finite element procedure is used to form a finite dimensional nonlinear program problem, and a nonlinear conjugate gradient scheme is implemented to find the minimizer of the Lagrangian. Convergence of the finite element approximations is analyzed and some error estimates are presented. A Matlab finite element code is developed to provide numerical solutions to the beam equation. Some analytic solutions are derived to validate the numerical solutions. To our knowledge, the numerical solutions as well as the analytic solutions are not available in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.