Abstract

Biomolecule detection based on surface-enhanced Raman scattering (SERS) for application to biosensors and bio-imaging requires the fabrication of SERS nanoprobes that can generate strong Raman signals as well as surface modifications for analyte-specific recognition and binding. Such requirements lead to disadvantages in terms of reproducibility and practicality, and thus, it has been difficult to apply biomolecule detection utilizing the advantages of the SERS phenomenon to actual clinically relevant analysis. To achieve reproducible and practical SERS signal generation in a biomolecule-specific manner without requiring the synthesis of nanostructures and their related surface modification to introduce molecules for specific recognition, we developed a new type of SERS probe formed by enzyme reactions in the presence of Raman reporters. By forming unique plasmonic structures, our method achieves the detection of biomolecules on chips with uniform and stable signals over long periods. To test the proposed approach, we applied it to a SERS-based immunohistochemistry assay and found successful multiplexed protein detection in brain tissue from transgenic mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.