Abstract

A fractal analysis is presented for analyte-receptor binding kinetics for different types of biosensor applications. Data taken from the literature may be modeled using a single-fractal analysis, a single- and a dual-fractal analysis, or a dual-fractal analysis. The latter two methods represent a change in the binding mechanism as the reaction progresses on the surface. Predictive relationships developed for the binding rate coefficient as a function of the analyte concentration are of particular value since they provide a means by which the binding rate coefficients may be manipulated. Relationships are presented for the binding rate coefficients as a function of the fractal dimension Df or the degree of heterogeneity that exists on the surface. When analyte-receptor binding is involved, an increase in the heterogeneity on the surface (increase in Df) leads to an increase in the binding rate coefficient. It is suggested that an increase in the degree of heterogeneity on the surface leads to an increase in the turbulence on the surface owing to the irregularities on the surface. This turbulence promotes mixing, minimizes diffusional limitations, and leads subsequently to an increase in the binding rate coefficient. The binding rate coefficient is rather sensitive to the degree of heterogeneity, Df, that exists on the biosensor surface. For example, the order of dependence on Df1 is 7.25 for the binding rate coefficient k1 for the binding of a Fab fragment of an antiparaquat monoclonal antibody in solution to an antigen in the form of a paraquat analog immobilized on a sensor surface. The predictive relationships presented for the binding rate coefficient and the fractal dimension as a function of the analyte concentration in solution provide further physical insights into the binding reactions on the surface, and should assist in enhancing biosensor performance. In general, the technique is applicable to other reactions occurring on different types of surfaces, such as cell-surface reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.