Abstract
Neyman-Pearson classification has been studied in several articles before. But they all proceeded in the classes of indicator functions with indicator function as the loss function, which make the calculation to be difficult. This paper investigates Neyman-Pearson classification with convex loss function in the arbitrary class of real measurable functions. A general condition is given under which Neyman-Pearson classification with convex loss function has the same classifier as that with indicator loss function. We give analysis to NP-ERM with convex loss function and prove it’s performance guarantees. An example of complexity penalty pair about convex loss function risk in terms of Rademacher averages is studied, which produces a tight PAC bound of the NP-ERM with convex loss function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.