Abstract
The effective elastic modulus of hydroxyaptite (HA) microspheres composite scaffold is determined by the HA microspheres’ elastic modulus, accumulation topology model and the porosity. Experiments showed that different accumulation pattern and porosity has different modulus for bone scaffold. Furthermore, porosity and accumulation pattern are affected directly by the adhesive thickness. Here, we elucidate the effect of the scaffold parameters on bone sitffness and porostiy by means of a mathmatically based approach. Based on ANSYS simulation platform, the effective elastic modulus of HA microspheres scaffold was demonstrated. And the effective elastic modulus of artificial bone scaffold with different adhesive thickness was calculated by using APDL. Use the void fraction to illustrate the porosity of HA microspheres scaffold, which is an important consideration when attempting to evaluate the potential volume of water and hydrocarbons it may contain. By analysis of the optimization results, the effective elastic modulus reaches the maximum when the adhesive layer thickness is 0.05 mm, while the corresponding porosity is 0.5231
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.