Abstract
An experimental program was conducted to study the inelastic response of steel roof deck diaphragms for low-rise steel buildings subjected to seismic loading. Tests were performed on 3.6 m×6.1 m diaphragm specimens made of corrugated steel deck panels. The parameters examined were the thickness and configuration of the sheet steel panels, the type and spacing of the fasteners, the applied loading history and the influence of end lap joints. Diaphragms built with screwed side lap fasteners and nailed deck-to-frame connectors exhibited a pinched hysteretic behaviour, but could sustain large inelastic deformation cycles with limited strength degradation. This type of diaphragm construction could be designed to resist earthquake effects in the inelastic range. Higher shear resistance and less pinching was observed for systems that included welded with washer connections. However, their strength decreased rapidly after the peak load was reached, and hence, these systems should be designed for limited inelastic response. Deck systems with button punched side laps and frame welds without washers showed a brittle response and should be designed to remain elastic under severe earthquake motions. The inelastic demand was found to increase when the spacing of the fasteners was reduced. Specimens constructed with an internal overlap joint exhibited extensive warping of the cross section mainly due to the shorter panel length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.