Abstract

Complex field measurements are increasingly becoming the standard for state-of-the-art astronomical instrumentation. Complex field measurements have been used to characterize a suite of ground, airborne, and space-based heterodyne receiver missions [1], [2], [3], [4], [5], [6], and a description of how to acquire coherent field maps for direct detector arrays was demonstrated in Davis et. al. 2017. This technique has the ability to determine both amplitude and phase radiation patterns from individual pixels on an array. Phase information helps to better characterize the optical performance of the array (as compared to total power radiation patterns) by constraining the fit in an additional plane [4]. Here we discuss the mathematical framework used in an analysis pipeline developed to process complex field radiation pattern measurements. This routine determines and compensates misalignments of the instrument and scanning system. We begin with an overview of Gaussian beam formalism and how it relates to complex field pattern measurements. Next we discuss a scan strategy using an offset in z along the optical axis that allows first-order optical standing waves between the scanned source and optical system to be removed in post-processing. Also discussed is a method by which the co- and cross-polarization fields can be extracted individually for each pixel by rotating the two orthogonal measurement planes until the signal is the co-polarization map is maximized (and the signal in the cross-polarization field is minimized). We detail a minimization function that can fit measurement data to an arbitrary beam shape model. We conclude by discussing the angular plane wave spectral (APWS) method for beam propagation, including the near-field to far-field transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.