Abstract
Chloride-induced corrosion in reinforcing steel is one of the major durability problems in reinforced concrete (RC) structures. Fick’s 2nd law can be simply applied to submerged RC structures however it has a very limited application to partially saturated condition. Furthermore, if RC structures have cracks on their surface in partially saturated condition, additional diffusion and permeation due to crack width should be considered for the quantitative evaluation of chloride penetration.In this paper, an analytical model is proposed for an evaluation of chloride behavior in cracked concrete. Both chloride diffusion and water permeation in a Representative Element Volume (REV) with crack are considered, which assume averaged transport of ion mass. Through rapid chloride penetration test (RCPT) for specimens with different crack width, crack effect on diffusion is analyzed considering crack width (0.1–0.4mm). Utilizing the crack effect on diffusion and permeation, an analysis technique for chloride behavior in cracked concrete is proposed based on the framework considering thermodynamic coupling of hydration, moisture transport, and micro-structure formation. The proposed technique shows a possibility of evaluation for chloride penetration in partially saturated-cracked concrete through the comparison with the results from salt spraying test (SST), which are in good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.