Abstract

Voice quality variations include a set of voicing sound source modifications ranging from laryngealized to normal to breathy phonation. Analysis of reiterant imitations of two sentences by ten female and six male talkers has shown that the potential acoustic cues to this type of voice quality variation include: (1) increases to the relative amplitude of the fundamental frequency component as open quotient increases; (2) increases to the amount of aspiration noise that replaces higher frequency harmonics as the arytenoids become more separated; (3) increases to lower formant bandwidths; and (4) introduction of extra pole zeros in the vocal-tract transfer function associated with tracheal coupling. Perceptual validation of the relative importance of these cues for signaling a breathy voice quality has been accomplished using a new voicing source model for synthesis of more natural male and female voices. The new formant synthesizer, KLSYN88, is fully documented here. Results of the perception study indicate that, contrary to previous research which emphasizes the importance of increased amplitude of the fundamental component, aspiration noise is perceptually most important. Without its presence, increases to the fundamental component may induce the sensation of nasality in a high-pitched voice. Further results of the acoustic analysis include the observations that: (1) over the course of a sentence, the acoustic manifestations of breathiness vary considerably--tending to increase for unstressed syllables, in utterance-final syllables, and at the margins of voiceless consonants; (2) on average, females are more breathy than males, but there are very large differences between subjects within each gender; (3) many utterances appear to end in a "breathy-laryngealized" type of vibration; and (4) diplophonic irregularities in the timing of glottal periods occur frequently, especially at the end of an utterance. Diplophonia and other deviations from perfect periodicity may be important aspects of naturalness in synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call