Abstract
Increasing demands for reducing greenhouse gases drive the metal processing industries to a CO2-neutral production. A thorough understanding of CO2 emission sources from the stage of material acquisition up to the final component is thus necessary to improve the CO2 footprint of sheet metal hot forming process chains. To emphasize on this, an exemplary hot forming process chain is assessed to identify the impact of each sub-process step on total CO2 emissions and the savings potential of individual measures is evaluated. Moreover, a mathematical model is proposed that enables for the prediction of the product specific CO2 emissions as early as in the product design stage. This model is tested to calculate the CO2 emissions resulted during the production of an exemplary hot stamped sheet component. The results point out that the heating stage is responsible for the second highest percentage of CO2 emissions in the process chain next to the material acquisition. Thus, as one of the most suitable measures, a concept to recover process heat from hot formed components to the cold initial blanks is proposed and evaluated analytically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.