Abstract
Since the last two decades, several differential operators appeared in connection with the so-called oscillatory geometry. These operators act on sections of infinite rank vector bundles. Definitions of the oscillatory representation, metaplectic structure, oscillatory Dirac operator, as well as some fundamental results of the analysis in C∗-Hilbert bundles are recalled in this paper. These results are used for a description of the kernel of a certain second order differential operator arising from oscillatory geometry and of the cohomology groups of the de Rham complex of exterior forms with values in the oscillatory representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.