Abstract

Based on the random field theory (RFT) and the stochastic finite element method (SFEM), the variances of the mechanical properties of materials and structures are studied. Manufacturing processes can easily lead to the spatial variations of the load and the material properties such as moduli and density. Characterizing the elastic moduli, load and density with one-dimensional random fields, the analytical solutions for the coefficient of variations (COVs) of effective material moduli, displacement and natural frequencies of beams are obtained. Then, with the fiber and matrix properties, volume fraction modeled by two-dimensional random fields and the fiber angle as a single random variable, a Monte Carlo simulation (MCS) is performed to generate the variances of effective modulus of fiber-reinforced composite laminar plate. Compared with the previous numerical conclusions, the present results reveal that the variances of effective material properties and structural displacement are greatly dependent on both the random fields and the sizes of structures in theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call