Abstract

The high-strain dynamic test method possesses the attributes of speed, efficiency, and environmentally-friendly, low-carbon characteristics. To study the reliability of the high-strain dynamic test method in detecting the bearing capacity of pile foundation in permafrost regions, 4 test piles, each with a length of 15 m and a diameter of 1.0 m, were poured based on the actual bridge construction project in the permafrost region of Daxing'an Mountains in China. Based on the temperature data between the piles and soil, the refreezing state of the pile foundation was comprehensively judged. Subsequently, the static method was employed to assess the friction resistance values and single pile bearing capacity of each soil layer on the pile side under different freezing states before and after the pile foundation refreezing. Building upon these findings, the restrictive parameters for soil elastic limit q_{(i)}, soil resistance R_{U} (i) and other parameters in the pile-soil model of high-strain dynamic test method are clarified. The test and analysis results indicate that under the condition that the ground temperature of frozen soil is about − 1.9 °C, the pile-soil refreezing takes about 120 days, and the pile-soil refreezing is a slow process; In CAPWAPC calculation program, after the values of soil parameters were constrained by the results of static-load test, the calculated curve is in satisfactory agreement with the measured curve, and the parameters of the pile-soil model are reliable, which can be used for the rapid detection of the ultimate bearing capacity of piles in permafrost regions; In the process of pile-soil refreezing, the change of temperature field affects the freezing strength between pile and soil, the process of pile-soil refreezing is positively correlated with the increase of pile foundation bearing capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call