Abstract
The conductive or ferromagnetic material with coating layer can be tested by electromagnetic acoustic transducer (EMAT) without pre-treatment. The electro-acoustic converting occurred on the surface of the specimens is mainly concentrated within the skin depth of the eddy current. Thus, the electromagnetic property of the material surface has great influence on the efficiency of EMAT. The eddy current densities induced in the coating of specimens and Lorentz force are calculated with fi nite element software ANSYS when EMAT is applied to the 20 steel-based specimens coated with different electrical conductivity materials. With shear wave EMAT, the specimens are tested and the relationship between the amplitude of the first echo wav e signal and electrical conductivity of the coating is analys ed. The theoretical analysis and experimental results show that under the fixed excitation condition, the higher the electrical co nductivity of the coating material, the larger the induced e ddy current density and Lorentz force are; the increase of the electrica l conductivity of the coating is beneficial to the electromag netic acoustic excitation and the acquisition of higher voltage a mplitudes of the echo waves signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Electromagnetics and Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.