Abstract

Aircraft tire is an important subassembly of aircraft, which is related to its safety tightly, especially for civil aircraft. Moreover, hydroplaning of aircraft tires is often a contributing factor in take-off and landing overrun and veeroff accidents. Therefore the study on them is imperative. For studying the hydroplaning of aircraft tire, a 2D finite element model of aircraft tire is developed by using TYABAS software, and then a 3D patterned tire model is presented. The hydroplaning of aircraft tire is analyzed by generally coupling an Eulerian finite volume method and an explicit Lagrangian finite element method. The hydroplaning speeds are investigated, which is a key factor of hydroplaning. Results indicated that the hydroplaning speed increases with the increment of inflation pressure; the hydroplaning speed decreases with the increment of the footprint aspect ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call