Abstract

Superconducting Conductor on Round Core (CORC) cables fabricated by several high temperature superconducting (HTS) tapes are able to carry enormous electrical current density, to be widely used in a variety of superconducting applications such as power transmission, fusion, and magnetic resonance imaging (MRI). However, the AC losses induced in the superconducting tapes under alternating current or magnetic field generate heat dissipation which can reduce the electric power efficiency. Therefore, it is essential to analyze the AC loss behavior of CORC cables as well as consider methods to reduce it. This paper presents an AC loss study of CORC cables with several different superconducting layer thicknesses. The CORC cable simulation model is built in a software suite named COMSOL Multiphysics utilising the finite-element method (FEM) solved by the three-dimensional (3-D) H-formulation. By implementing FEM simulations, the cases of increasing the degree of freedom of superconducting layers have been considered, and the AC losses of a single layer CORC cable model with three tapes mounted around the core have been calculated and analyzed for different layer thicknesses. Simulation results are verified with experimental results measured in previous literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call